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Overview

Learning an effective policy to control a high-dimensional, overactuated system is very

challenging for deep reinforcement learning.

The neural control of vertebrate musculoskeletal systems will provide insight into the

control of these systems.

We propose a synergy-based representation method of reinforcement learning algorithms

to enhance sample efficiency in controlling these systems.

Figure 1. Motor behaviors of overactuated musculoskeletal systems acquired by DynSyn. (a) Gait of

MS-Human-700 model. (b) Manipulation of Arm model. (c) Locomotion of Ostrich model.

Background

We perform validation of the algorithm in the musculoskeletal system. In this system, the

muscle-tendon units exert tensile forces on bones to move joints.

Neuro-MuscleDynamics. The activation-contraction dynamics ofmuscles exhibit non-linearity

and temporal delay, thereby posing challenges to neuromuscular control. The muscle force

produced can be formulated as

fm(act) = fmax · [Fl(lm) · Fv(vm) · act + Fp(lm)]. (1)

The muscle activation act is calculated by Eq.(2) where u is the input control signal of the

musculoskeletal model.
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Motivation

Figure 2. Motivation of DynSyn. The brown link represents a robot arm (or bone), while the blue and green lines

represent the cable actuators (or muscles). By randomly controlling the joint velocity, the lengths of the four

actuators are demonstrated on the right. Actuators with similar functions are categorized into the same group

due to similar structures, based on the correlation of length changes.

Algorithm

Representation Generation

Disturbances are directly applied at the joints, and clustering is performed based on the cosine

similarity of muscle length changes.
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State-dependent Representation

Figure 3. Overview of DynSyn.

The algorithm generates:

1. a unified action aG for each group of actuators,

2. and state-dependent correction weights w for each actuator on top of the unified action aG.

aG = tanh(uG), uG ∼ N (µG, σG) (4)

w = tanh(ŵ), ŵ ∼ N (µw, σw) (5)

aI = IS(aG) � clip(κw, −c, c) (6)

c = min(max(kDt + aD, 0), κ) (7)

a = clip([aG, aI], −1, 1) (8)

Figure 4. DynSyn Weight Strategy.

Experiments

Figure 5. Experiment environments. (a) MS-Human-700-Gait (a ∈ R700). (b) Legs-Walk (a ∈ R100). (c) Arm-Locate

(a ∈ R81). (d) MyoLegs-Walk w/ rough terrain (a ∈ R80). (e) MyoHand-Reorient100 (a ∈ R39). (f) Ostrich-Run

(a ∈ R120).

Results

Sample Efficiency and Generalization Capability

(a) Standard results. (b) Generalization results.

Figure 6. Learning curves in the experimental environments.

Physiological Interpretability

(a) Standard results. (b) Generalization results.

Figure 7. Muscle grouping of Legs model.

Conclusion

We propose a new method that generates synergistic representations from dynamical struc-

tures and offers efficient, generalizable and interpretable control of high-dimensional overac-

tuated systems.
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